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Hard-Particle Fluids. 
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The Kirkwood-Salsburg equation for the many-particle distribution func- 
tion is generalized to mixtures of anisotropic particles which can form 
ordered (e.g., liquid crystal or solid) phases. We extend similarly various 
statements of the "zero-separat ion" theorem. This allows us to obtain the 
small- and large-" scaled" particle limits in which a single particle is scaled 
to zero and infinite size, respectively. Simple interpolation between the 
corresponding solutions to the Kirkwood-Salsburg equation leads directly 
to the generalized scaled particle theory (SPT). Distribution functions as 
well as thermodynamic properties are considered. As special cases we treat 
first the single-component, hard-sphere system in its disordered and ordered 
states; an additional (gas ~ liquid) phase transition fails to appear when 
attractions are added. We then consider mixtures of particles, including 
those which interact via nonadditive hard cores. The SPT relations describ- 
ing order states and isotropic phases of mixtures of differently shaped 
particles are found to violate certain of the Maxwell relations. This thermo- 
dynamic inconsistency, inherent in the SPT because of its having afforded 
special status to a single particle, is absent altogether in the alternative 
description of hard-particle fluids which is presented in an accompanying 
paper. 

KEY WORDS: Kirkwood-Salsburg equation; zero-separation theorem; 
scaled particle theory; distribution functions; equations of state; hard-core 
particles; nonadditive pair potential; thermodynamic inconsistency. 

1. I N T R O D U C T I O N  

R e c e n t l y  we have  been  c o n c e r n e d  wi th  ha rd -pa r t i c l e  fluids,  in p a r t i c u l a r  as 

m o d e l s  fo r  t h e r m o t r o p i c  l iqu id  crystals .  A gene ra l i zed  van  der  W a a l s  t h e o r y  

was  used  ~1-3~ to  sepa ra te  the  effects o f  repuls ive  a n d  a t t r ac t ive  i n t e r m o l e c u l a r  
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forces: the attractions are mean-field-averaged, and the repulsions define a 
hard-particle reference system. The statistical thermodynamics of the hard- 
particle fluid has been treated alternatively by scaled particle theory (SPT)(4-v~ 
and, more recently, by a resummed virial series (the "y-expansion"). (8,9~ In 
this and the following paper we present critical discussions of, and general 
improvements upon, these two approaches to hard-particle-fluid equations of 
state. 

The scaled particle theory was first formulated twenty years ago for the 
particular case of hard-sphere fluids. (4~ Since then, many investigators have 
considered its generalization to fluids of anisotropic hard particles ~5-7,22) and 
attracting particles. (~b~ These latter efforts have been less successful than those 
involving hard-sphere fluids, for a variety of reasons. In the present paper we 
discuss a general derivation of the scaled particle theory which includes 
previous developments as special cases. Our aim is to expose the strengths and 
weaknesses of this approach by checking thermodynamic consistency and 
equation of state data for each particular application. 

The paper consists of two parts. In Sections 2, 3, and 4.1-4.3 we present 
our derivation of the scaled particle equations [Eqs. (45)-(49)]. We begin with 
the generalized Kirkwood-Salsburg (KS) and zero-separation-theorem (ZST) 
equations and evaluate them in the small- and large-scaled-particle limits. 
Interpolation leads directly to Eqs. (45)-(49). We do not need to consider the 
geometric arguments featured in earlier work ~,~ and, in addition, use of the 
KS and ZST equations permits us to treat the distribution functions as well 
as the thermodynamic properties. The second part of this paper is comprised 
of Section 4.4. Here we illustrate Eqs. (45)-(49) by specializing to the case of 
hard-sphere and attracting-hard-sphere systems (both fluid and solid phases, 
including nonadditive mixtures), and isotropic and anisotropic phases of 
arbitrary shaped particles. In case of an ordered state we are particularly 
concerned with the thermodynamic inconsistency which is inherent in SPT. 

Part I, Sections 2, 3, and 4.1-4.3 can be skipped by readers interested 
primarily in the applications (strengths and weaknesses) of the SPT. Part II, 
with Eqs. (45)-(49), provides a self-contained discussion of SPT results. 

2. THE K I R K W O O D - S A L S B U R G  (KS)  EQUATION 

We consider a v-component mixture of arbitrary shaped particles which 
comprise either an isotropic or anisotropic fluid (e.g., a liquid crystal with 
long-range orientational order) or a solid. The particles are assumed to be 
rigid; the internal degrees of freedom are separable and do not affect the 
intermolecular interactions. Let 

p= = N d V  (1) 
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be the number density of species c~. The position and orientation of  each 
molecule are characterized by X = r, ~ ,  where r -- IX] is its distance from 
the origin and ~ is its set of angle coordinates (Euler angles and the polar and 
azimuthal angles of the radius vector from the origin). The activity of species c~ 
is defined in the usual way by 

z~ = p~ exp(fitL~ x) (2) 
where 

/x~ x = / ~  - tL~ aoai (3) 

is the excess (over that of an ideal gas) chemical potential; t ~  ~al = t~ ~ + 
k T l n  p~ ,  where ~ o  is the standard chemical potential. Then the probability 
of observing any nl out of N1 molecules of species 1, n2 out of N2 of species 
2,..., and nv out of Nv of species v in the configuration 

X ~176 v = 1 . . . .  , n y ; y  = 1 . . . .  , v }  

within 

I:-[ "' dX<~) = I - I  dX~, 
y=l iy=! 

is (~o~ 

/ I  (N, zy,_ n,), f ..; y (4) Pnl , . . . ,nv l .  ) "~ 
gl>~nl gv>~flv y=l 

Here n = ~ = 1  n~, N = ~.~=l N~, and dX has been normalized so that 

dX = V; p<"> is the generic n-particle distribution, (1~ with E the grand 

canonical partition function. 
Assume now that the intermolecular interactions are pairwise additive, 

and write 

�9 ~,"~ = u . -  u._~ (5) nl-- Sl,...,nv--8 7 

for the potential energy associated with a subgroup s (s = ~ = ~ s~) of n. This 
allows us to express the total potential energy as (s = 1) 

UN (l,n) I/2(I,N -n  + 1) = ~Fn~ ..... n~-i ..... ~ + UN-z XNl--nl,...,N~-nv -~ 

The first term here describes the interaction of particle 1 (of species ~) with 
the n - 1 particles in the group of n; the second term includes its potential in 
the field of the remaining N - n; and UN- 1 is of course the total interaction 
energy in the absence of 1. Accordingly we can write 

exp(-f lUu)  = exp(-fi~V ~,"~) exp(-f lUu_z) ! ~  [1 + f~,(X~=l, X~,)] 
y=l ly=~y +i 

= exp(-f iW (1'")) exp(-fiU~r-1) 

'< ' 1 - I  
,%1=0 I%=0 y=l k# i~=ny+ I 
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where as usual 

A~(X~, X,) = f~ , (X~)  - exp(-,Su~,,) - 1 (7) 

with u~(X) the interaction energy between two molecules of  species ~ and y 
whose relative posit ion and  orientat ion is X. Insert ing this into (4) gives 

~ NI-~I Nv-nv 
p ( , ~ ) =  =1 exp(_flVa,,~) ) . . . . . .  ~ 

N I = ~  1 Nv = r~v /~1=0 kv=O 

k,  ! (N, -- n ,  - kr) i v" dX(~- '~  e x p ( -  fl U~_ 1) K (~'", (8) 

Here  the kernel K (~'~) is defined by (k = Y.~=l k~) 

K (~'~) rX X (~) = " = 1 ..... v}) kl ..... ~,~. ~,=1; = {X~y;i 7 1 + 8 ~ , . . . , k  v + 8 ~ , y  

kr+6ay 

= 1--[ f~,(X,~ = 1, X,,) (9) 
y = l  r 1 + 6~, 

Reversing the order of  summat ion  yields the Ki rkwood-Sa l sburg  equat iona:  

p(•) rX(=) - {Xi,; i v 1 . . . .  , n v ;  Y = 1,..., v}) 

ex , , r_  ~W~l.~> rX �9 X(~- , ) ]  

(x x "'" K # l . . . . , k ,  ~,=1, --- = 

~(n+~-l) cy(~+k-1) {X~,; iy 1 + 8,~,..., ny + k~}) X g~l+1~l,...,na+Ica-l,,,,,nv+kvkx~ ~--- = 

• 1-I dX,, (8a) 
7=1 {7~y+l 

Consider now the distribution function 

t~ (~> = p~) exp(/3U~) (10) 

which has the same meaning as p(~) except that  the interactions between the n 

8 This derivation of (Sa) from (4) is a straightforward generalization of the discussion 
given by Hill (see pp. 251-257 of Ref. 10). Cotter and Martire c11~) and Morriss and 
Smith mm do not recognize that their po) is the KS equation (8a) with n = 1 and 
derive it independently using probabalistic considerations ~=~) or the graphical decom- 
position theorem. ~b) 
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particles have been " r e m o v e d . "  Equat ion  (8a) can then be rewritten in terms 
of  #~): 

~(n) ( X  (n) ~ {Xr iy = 1,..., nT} ) 
~1 )..., ~g). . .)~v\ 

= zo E ' E r I , ;  
~l~>O kv>~0 

/ f (k'cO x X (k) x -.. K ~  ..... k~( ~=~; =-{X,~;iT=nT+l,...,nT+kT}) 
V 

X ~-"~YL--I" n i  . . . . .  n a - l , . . . , n v k  ~ 

,(n + k-  l) m(n + k- 1)) dX(a  X pnl+lcl , . . . ,na+l%t_l , . . . ,nv+kvk.~ 

Z f ~(n - 1) ( X ( n  - 1)'~ 
�9 ~ -  ~ l J n l , . . . , n g - l , . . . , n v k  ] 

+ ~ ff,~7(Xi,,:,,X,exnr-Rw (z,', z ..... ,,('XT; X("-I>)] 71 ~' t  F" n l , . . . , n c t -  
, Iv  

~(.> (v(~-l> X7 ) dX 7 X i S n l , . . . , n a _ l , . . . , n ~ + l  . . . . .  n . ~ z x  

+ 
71,72 = 1 

,~v,-,r t~2 , .+z>  (X X72; X~ 
X ~"~-~L--~' n l , , . . , n o c - l , . . . , n v  t. 7Z) 

X71, X72) dX71 dX72 + ""} #n+l) / ~Z(n -  1) x /'~l....,ntz-- I,.. ,T&y 1 + i .... ,r~y 2 + 1 ,,.,,TIV~Z~" :' 

(Sb) 

The first te rm in curly brackets  corresponds  to k = 0, the second to k = 1, 
the third to k = 2, and  so on. 

I t  is also convenient  to use the singlet distr ibution funct ion p~) to define 
a new function 

= ~ / f : ~  I - I  p~,,(x,,) (10 
= i y = l  

which is related to the more  famil iar  correlat ion 

via 

gOO = p(n> p )( ) 
= �9 = 

(12) 

y(") = g(~)exp(flU.) (13) 
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The KS equation for y (~) is 

x exp(-/3W (~,"+~-~)) y ( " + ~ - ~ ) ~  "'+~' 
V=l i~,= n~ + 1 

g(~) satisfies a similar equation. 

3. THE Z E R O - S E P A R A T I O N  T H E O R E M  (ZST) 

Let us now consider pair potentials having the form of a hard core plus 
"cu tof f"  attraction (here X denotes the position and orientation of ~, relative 
to r 

~ + ~ ,  r < d~ 

u~(X) = ~%r(X), d.~ < r < a~  (14) 
/ 

1.0, a~  < r 

d.~ = d~r(~2) and a~r = a~r(~) are convex surfaces and ~.~ is an arbitrary 
function. More explicitly, d~r describes a surface--depending on the relative 
orientation ~ ,  and enclosing a particle ~ inside which the center of particle y 
cannot be found (due to the hard-core repulsions). In turn a~r encloses day 
and has the property that a and V no longer attract each other when the center 
of 7 is outside it; the cluster sums over the k~ in (8) then terminate after a 
relatively small number of terms (determined by the ratio a~, /d .~) .  

We introduce the quantity 

S~)(~2~, ~2 o = min (d~ - a~) (15) 
K ~ , 7  = 1 , . . . , 9  

and suppose that there are two components a and ~- such that S~ ~) is non- 
negative for a given relative orientation ~2,~ of ~- and c~ particles. Then 
r,~ _< S~ ~> defines a volume R~ ~, containing cr such that any particle V cannot 
get closer than a.~ to % because of the hard core d~r (~ is actually " inside" r;  
see Fig. 1A). This means that the corresponding Mayer functionf~y vanishes, 
and hence all k t> 1 terms are zero in Eqs. (8b) and (8c). Thus we can write 

t3~],.,.,~ . . . . . .  ~ . . . . . . . .  [r,~=1,,,=1 e R~ ~)] = z ~(~-1) (16a) (~/-~nl~ ... ~n a - i,... 97~T,...,~ v 

and 

Y~]). .................... [r~=1,~,=1 ~ R~ ">] = z. .,(.-1) (16b) 
p ~ l ) ( X ~ ~  = 1)  y - 1  . . . . . . .  - 1 . . . . . . . . . . . . . .  

This last equation has the form of the zero-separation theorem given by 
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Fig. 1. In configurations (A) and (B), cor- 
responding to r~e R~ ~ and r~ e "n~a ,  
respectively, particle 7 cannot overlap the 
shadowed area which comprises the 
sphere of interaction with particle ~; in 
(C), for r~ e D~ ~,  particle 72 cannot over- 
lap the shadowed area if 7z interacts with 
~. The solid and dashed curves denote the 
d and a particle boundaries and the dot- 
dashed curve shows the "interaction 
sphere"  (for simplicity we depict here 
figures appropriate to the case of additive 
diameters). 

r y 

(A) 
r2 

(S) 

/I 

(c) 

Barboy and Tenne(12~; the latter investigators considered an isotropic fluid 
and hence have p(~l~(X,) = p~ = N~/V on the right-hand side of  (16b). 4 

The range of  validity of  (16) is actually larger than R~ ~. Even when S~ ~ 
is negative, or r~, > S~ (~ > 0, some configuration may exist such that 
cannot interact with a molecule from "ou t s ide"  (i.e., a particle not included 
in the original group n). More explicitly, for a given configuration of  the 
n - 1 particles and a given orientation of  is = 1, there exists a nonzero 
volume R(~ having the property that  

f~, exp(-/~W (1'~)) = {exp[-flu~r(X~=~, Xr) ] - 1} 

x I--I exp[-#u,~(X~,, X,)I = 0 (17) 
~ = 1  i ,=l  +6a~ 

whenever i, = 1 is confined according to r~=~ e n~,...,.,_~'~(~ . (see Fig. lb). It 
then follows that  Eqs. (16) hold. 

The zero-separation theorem can be generalized still further by imagining 
that  several (s) of the n molecules do not interact with the rest (N - n) of the 
system because of  the hard cores of  the remaining n - s molecules. Let the 
volume _.~,...,~._~R(~z ....... ~ be defined by {X~} such that  

K[?;~!,~(X~; X (~) = {X~; i~ = 1,..., s~}) 
x e x n r - m F  (~,n-s+l~ r �9 X ("-s) 

Stz 

= [~=12~ !~--~f~r(X~' X')][~ ILI l~I  exp[-#uw(X'~' Xr)]] = 0  (18) 
L =i i,=sz+l 

The ZST has been formulated and proved first by Hoover and Poirier m3~ and later by 
Meeron and Siegert (24~ for a hard sphere fluid. For generalizations and further applica- 
tions of ZST see Refs. 18-20, 25-27. 
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Then we can write 

7~I''"'nvL TI''"'T~--SJ ~=1 ~ / FR1-81'""~ 

and 

_~. (19a) 

y < " )  r rmeR (~1 ..... ~ " )1= [1 -~ I2~  ~ ],,("-*' (19b) 

In  the particular case where s = n - 1, all n - 1 molecules lie inside the hard 
core o f  one molecule, say i~ = 1, so that  

y(~,...,,~(r~= = ,,~ e R<j); i, = 1 + 8~, ..... n,) = ~ ~ z, (20a) 
= , ,=~ p p ( X , )  

v 
~(") tr e R (*)" i, = 1 + 3~= n,) - -  P ( ~ i ) ( X ' ~  = i )  H z~n' (20b) F;,I,l,...,ng,...,r~v~, ia= l , i  ~ o: ~ ~ . . . ,  

(~> such that, a l though (17) is not  Finally we introduce a volume D, 1 ........ 1 
satisfied for certain X~ = 1, the equality 

f~,i(X~. =1, X,1)f~,=(X~ =1, X,2) 

x ,.ACt-- t , ' ' ' r  ~(2,~+1)~1,...,~_1,...,n~ (Xy~, X~=; X (~-1~ --= {X~,; i~ = 1 + 8~,..., n~})] 

= 0 (21) 

holds nevertheless for each yl and ~'2 (see Fig. 1C). It  then follows f rom (8) 
that 

:(~) ~ r~ 1 D (~) ~ ........ ( . =  e ,~ ..... ~_~) 

/ 
...... - i  ...... ,+1 ....... 

R ( n -  1) 
E + 

~ \ e ~  ..... n~-z ..... ~ ' 7  

a,~) } (22a) x exp(- /~Tnl  ..... ~ - 1  ....... ) dX,  

y(n) n "r e D (~) 
nlp", v[ i~=1 ~1,...,zn,' 

_ zo  S . , ( . - l >  . . . . . . .  - . . . . . . . . . . .  . 
t " r n v ' ' ' ' ' n ~ - l ' ' ' ' ' n v  ..~ ~(n) 1 n +1 

x [ exp ( -  5W (l'~))]o(~)(xy) d X , }  (22b) 

Equations (16) and (22) provide the n-particle distribution function 
(n) ~ R(~)  (e) O,, ..... ~ ...... ~, for + as soon as we know the activity t i e  * " ~ l , . . . , n -  i D~l,...:n-I 

z,  and the (n - l)-particle d.f. ^(~- 1) I t  remains only to determine 
p(~) outside of  this range. 
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4. S C A L E D - P A R T I C L E  T H E O R Y  (SPT)  

4.1. Exact Results for  C o - v o l u m e s  

We begin by considering two convex 5 bodies c~ and 7' having volumes Vo~. 
and roy, respectively. The points from which the center of body c~ is excluded 
by the hard core of 7 also form a convex body, which we call the co-body of 
c~ and 7. Its volume (depending on the relative orientation of  c~ and 7) can be 
represented by the following formal expression(~3~: 

v,r = roy + C~k ~ + C~ ~ + vo~ (23) 

Here C~  ~" is given by the integral 

f f  ,[~r,(0q~) ~r~(0q~)] o .  = - a o  - 0, + x j (24) 

The radius vector r~ is defined as follows. For  any direction 0go--referred to a 
coordinate system fixed to the center of ~--there is one and only one plane 
which touches c~ and whose normal from the origin (center) lies along 0r 
In the simplest case (i.e., convex bodies of " the  first kind")  this "support-  
ing" ~a~ plane touches ~ at a single point: r~(0go) is the vector from the origin 
to this point of contact. Similar definitions obtain for rr and C~; ~ Note that 
(24) obtains only for convex bodies of " the  first kind." 

Expression (23) holds even in the case of convex bodies whose supporting 
planes make contact along a line or plane. In the case of right circular cylinders 
of diameter D and length L, for example, we have ~1~ 

Vo= = �88 (25a) 

and 

C~b~ ~ = �88 O~r + L~lcos 0,~f) 

+ D~L~[D~E(sin 0,~) + Lrtsin 0,r[] (25b) 

Here E(...) is the complete elliptic integral of the second kind and 0,r is the 
angle between the cylinder axes. For  spherocylinders C~ ~" takes on a much 
simpler form, (1~) and for additive hard spheres the co-volumes are trivial and 
well known. Hard spheres with nonadditive diameters, i.e., 

d,r = �89 + d~r)(1 + A~y), A,y r 0, > t -  1 (26) 

also allow v~r to be expressed in the form (23): 

v~o7 = ~rrd~(1 + A,r) 3 (27a) 

and 

C ~ ~  �89 + A,r) 3 (27b) 

5 A body is convex if any line segment whose end points lie inside it is wholly contained 
in the body. 
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(Note that v0~ depends here not only on % but also on y--hence the super- 
script.) 

Let S~r denote the surface of the co-body a 7. Then we can write 

= f dR.y H(S~,~ - Rc~,) Vc~r (28) 

where H(X) is the usual unit-step-function 6 and R~ is the vector running 
from one center to the other. Consider now the second virial coefficient 
defined by 

1 ~ drf.~(X) (29) a ~  --- - ~  

Since fay = - H ( S ~  - R~) for the hard-core potential, it follows that 

2B}~ ~ = v0~"(~ + C~ ~ + C~h~ ~ + v ~'06 (29c) 

For  the interaction potential (14), however, f ~  is discontinuous along two 
surfaces: _~y,g~l) = d~r and -~(m = a~.  Still more generally, it can be discon- 
tinuous along any number (k - 2, say) of surfaces between d~ and a~.  As 
long as the discontinuities _jAr(*).y off~y along ~.~v<~ are finite, then integration by 
parts allows the second virial coefficient to be expressed in the form <x2b> 

B~ = -~1 v~y(Sa~) -,At">4, + df v~,[&,,(f)] (30) 

Here Argo is defined by ~d g~ 

- " S < ~  - ~ S  "> ) (31) 
l~ct~, Sa t  + 

and the "equipotential"  surface S~y(f) is determined from the functional 
equation 

f~y(X~, Xy) = f (32) 

Alternatively, taking)~y out of the integral, we can write (29) as 7 

L B~,,= -{f . ,(~.,)  drH(a=,- r ) =  --~L,(~r)v~,(a.,) (33) 

Here g~ is some point inside the volume confined by surface a~.  
Implicit in the above are five restrictions o n f ,  r (or, equivalently, on u~): 

k c(~> 1 (i) finite k; (ii) finite 'a~r ; (iii) existence of a hard co re , f~ (d~=  ~vm _~. = _ ," 
(iv) a cutoff character, f.~(a.~ = S ~ + )  = 0; and (v) < ~o. Assume now 

H(X) = 1 for X I> 0 and vanishes otherwise. 
v Strictly speaking, the mean-value theorem (33) is true for continuous f~(r)  only. But 

for our present purposes we can always deform slightly the original potential u~y so as 
to make f ~  continuous: (33) holds for this " n e w "  f ~ .  
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in addition that the volume v ~ ( a ~ )  can be expressed in the form (23). [Note 
that we have not restricted d~ (which can reduce to a point) or a~  (which can 
become arbitrarily large as long as it remains small compared to the system 
size) or the sign of ~0~ (i.e., the interaction tail can describe either attraction 
or repulsion).] It then follows from (33) that 

with 

and 

(34a) 

(34b) 

Ca, = - k f i , ( ~ O C 2 ; ~  arr) (34c) 

[the factorf~,(g,,) is determined via Eqs. (30) and (33)]. As we can see from 
(24)-(27) and (34), for a~, << at, each successive term in (34a) is smaller by a 
factor of a~/a~r than its predecessor. This analysis may be straightforwardly 
extended to the KS equation. 

4.2. Small-Particle Limit of the KS Equation 

The range of integration in the second (k = 1) term on the right-hand 
side of (8b) is an overlap of the volumes v~(a~y) and V - v (~ where the 
volume v~>,...,~,_l is determined by the condition 

ex , , r -  ,~'F~I,,~> X~,~- 1~)] ~'L p" ~1 ....... -1 ....... (X~; = 0 

If  v=~(a=~) lies entirely inside V - "'(~ we have 

d X ~ J ~ p  e x p ( - f i ~  (1,'~) 

f d ~ y  v ~ ( ~ ) { f ~ t 3  ~"~ exp(-fl~Fa,">)}r~ =~ (35) 

g ~ ( ~ )  is some point inside v~v. This suggests that we write the left-hand side 
integral directly as the sum -~b~ ...... ~ - C ~  ...... , - C ~  ...... , - ~g~ ...... ,; here 

~b~ ...... . =  _ f  A v  vo,(a~,)~. ,~(,~> exp(_fihva,,~) (36) 

and similarly for the remaining three terms C~'"'r C~ ..... -, and r  ..... ~- but 
with vo~(a~) in the integrand replaced by CT~'~ a~), C~'~ a~), and 
Vo~(a~), respectively. Obviously, even when the integration range in (35) is 
smaller than v~ the left-hand side can still be written as the same sum whose 
successive terms are vanishingly small (compared to their predecessors) in the 
small-c~ limit. 
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Consider now the k >t 2 terms in (8b): 

f . . . f  K(k'~'/3<~+k-l~ exp(--fi~F (k'~+~-l)) dX(k) 

= aX< > V(Z?l.,,71c (37) 

Here V~yl...~ is the volur,e associated with the overlap of the k co-bodies 
formed between particle ~ and each member of the k-set of impenetrable 
particles. Again we assume that the distances between a and the other mem- 
bers of the set n are big enough so that exp(- /~F (k'~ + ~- ~)) > 0. Here ~<k~ is a 
set of k coordinates X~ inside v~l...y~ [K(k'~(~ (k)) ~ 0]. 

We examine first the case k = 2. Imagine (see Fig. 2) that the two co- 
bodies formed by pairs aT~ and a72 touch each other at a point P, and let ~r 
be a tangent plane at this point. Imagine further two more planes ~-, and ~2, 
both parallel to 7r, such that ~ra touches a and 7~ at P1 and ~2 touches a and 72 
at P2. Now let particles ~,~ and 72 approach each other (with their orientations 
held fixed) in such a way that P~ and P2 move along lines PP~ and PP2 until 
both bodies are in contact at P. Let the parameter it characterize their 
approach (0 ~ it ~< 1). When a is sufficiently small (a~ << dy~ ,  d~y~), the 
overlap of the co-bodies consists of two nearly spherical sectors. These sectors 
have heights i th~  and ith~ 2 and base diameters 2(2~,~ith~) ~12 and 
2(2ky~ith~2) ~j2, where h ~  is the distance between the planes ~r and 7rz 
(similarly for h ~ )  a n d / ~  a n d / ~  are the radii of mean curvature of the 
surfaces which touch at P(/~ >> h). Hence v ~  is of order itZh ~ ,-, itZ(a~<</d~) ~ 
and 

f f ,x. . ,x. . . . .  (<,oo/<,..)o ( ooloo.) 

-~" / I 

Fig. 2. Convex particles and co-bodies formed by them. See text for the definitions of 
points P, P~, Pz, and planes % w~, and ~rz. 
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[In cases where the tangent  plane ~r makes contact  with 7~ and 72 along a line 
or plane, there exist relative orientations o f  the particles for which v~zr2 ,,~ 
(Aa~/d~y) 3/2 or ~ A a , , / d ~ ;  but these orientations make negligible contr ibut ion 

to the f j" dX71 dXr~ in (38).] (For  n o n a d d i t i v e  pair interactions, the above 

analysis becomes more  complicated.)  
The integrals over X (~ in (37) with k > 2 are infinitesimal, i.e., they go 

to zero faster than Vo~/Vor in the small-c~ limit. Thus the k t> 2 sum (hence- 
for th  called F~) f rom the r ight-hand side o f  (8b) - -and  all its first and second 
derivatives with respect to a ~ - - v a n i s h  as a~, -+  0. ~'~ 

The k ~< 1 sum, on the other  hand, remains nonzero and finite. It  follows 
that  ln(#~)/z~# ~-~)) can be expanded for  small a ~  in the following Taylor  
functional  series: 

,~(n)  
In . . i ,  ...,nc,...,nv 

Z ~ ( n -  l )  , 
( ~ i ' ~ l , . . .  (/~ -- . t , . . . , t l  v 

= I n  1 - O ~ , ~  ~ . . . . . .  " - -  - - - ~ - V - - - - 5 - , ~  

2 (1 - E~,=~ p,~b~,, ..... '.)~ + \ V o , /  
(39) 

Here 

f ~ ( n )  n 1 n + 1 n - d X ~  V o ~ ( a . )  ,~ ., . . ~ a , , .  ~ ..... ,~) e,~ . . . . . .  - ..... ~ . . . . . .  
# ' T h ' n l  ~, . . ,  ~'a -- 1 , . . . , ~ y ,  . . . ,  n v 

- 4"~ ..... '" ( 4 0 a )  

C~y " - J d X 7  C~~ {" ~ e x p ( _  fi~F(1,.)) Pr/3("- ~) 

- C"r " ( 4 0 b )  

and similarly for  ~b~? ...... . and C ~  ..... -. Whereas ~b, is propor t ional  to the 

particle volume Vo~, C~  is propor t ional  to the product  o f  the surface area S~ 
associated with c, and the orientationally averaged radius o f  curvature /~y 
associated with 7. 

8 If the integration range in (37) is smaller than v,~l...rk , i.e., exp(-/3W (k'" + k-1)) = 0 at 
some points inside, F2 and its first and second derivatives vanish at a,~ > 0. 

9 Cotter,(15) in pursuing SPT for fluids of L, D spherocylinders, has claimed (details 
unpublished) that F2, OF2/eL, aF2/OD, ~2F2/OL OD, and OZF2/OD 2 all vanish as L, D ~ 0 
but that e2F2/~L2 does not: this contradicts the general arguments which we provide 
in the text. 
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4.3. Large-Part ic le  Limit  and Interpolat ion:  SPT 

Consider now the opposi te  limit, in which the d~ ,  y = 1 .... , v, grow to 
macroscopic  size, so that  each of  the remaining n - 1 molecules in p(~) is 
inside the R~ 0, i = 1,..., n - 1. Suppose further  that  in this limit the difference 
a,v - d,r remains finite ( a~  - d~  << d,r) and that  the system (whose size is 
still large compared  to d,y) is in a single phase. F r o m  Eqs. (2) and (20) we have 

In t3<~ ~ - : z-~ = E l n z  n - f l l ~  x (41) 
i=1 

[Note that  for a macroscopical ly large scaled particle, G1)(X~) is independent  
of  X~, i.e., p~l) __> p~.] Here  t~  x is the reversible work  necessary to create a 
large cavity in the system, plus terms propor t ional  to the cavity surface. 

In general, the surfaces d~  (and a~)  for different 7 do not  coincide with 
one another  since d~  # �89 + d~,). [For additive diameters,  d~  = �89 + 
O(d~fld~) and we have essentially one surface, �89 Tha t  is, d~  is impene- 
trable for  molecules of  species y but  not for  particles of  other species: the 
surface d~  acts as a semipermeable  m e m b r a n e ?  ~ The intersecting {G~, 
7 = 1,..., v} fo rm m /> v + 1 different spatial areas (see Fig. 3 for  the case 
u = 3). Each shell is macroscopical ly  large and thus the work  t*7 is 

m - 1  k~ S(~i  ) 
t*~x = *=IE j~=l"= ~o"(~ ~'~o~,~or (P(j' - p(o) (42) 

~o  ''"> is the volume of  the ith shell (area) tu~o~"(m) = V - ~ ' j : :  "~oJ ")~ and c(*J)~o is the 
surface dividing the areas with pressures P(~> and P(J). [P(~) is the system 
pressure P and p<l) = 0; P(J) - p(o is the osmotic  pressure across the sur- 
face S(~.] The volume v~)0 is in general confined by k, such surfaces; 

dll~ 

da2 

"dat 

Fig. 3. Schematic drawing of the eight volumes formed by the three "membranes" 
dry, y = 1, 2, 3. Volume (1) contains all three species; (2), (3), and (4) each contains two 
(2, 3; 1, 2; and 1, 3; respectively); (5), (6), and (7) each contains one (3; 1; and 2; 
respectively); and (8) contains none. 

lo This idea has been extensively elaborated upon over the last several years by Bergmann 
and Tenne. (16 
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~.,oC(*)= ~ = 1  o~oC"" is the overall surface confining -,o"(~ The v,o"") ~,~oV"" can be 
referenced to either d,~ or adv. 

Membrane  equilibrium determines the number  density p~) o f  species y 
and pressure in the ith shell (i = 1, 2,..., m). Wri t ing/ /v  *) for the chemical 
potential o f  species 7 in the ith shell, we have 

�9 (o 3 (43a) t*~(Pl ,..., p~ .... , p,,) = ~,"(~ ,..., p~),..., p,~,,. 

and  
ap(i ) v(i) ~ (i) 

.> = O~8~(o,  n = 1 .... ,v  <~) (43b) 
OR@n, Y = I  V~Pn. 

where v (*) is the total number  o f  components  in the ith shell (v (r~) = u and 
v a) = 0). The explicit expressions for funct ions /~)  may  be obtained with the 
help of, say, SPT for  a v (~ ( <  u) component  mixture. For  m = 2, Eq. (42) 
reduces to t4  x = vo~P and no additional information is necessary. In  general, 
however, we write 

A(n)  n m -  1 k~ ~ ( i j )  

lnz~<._~)  p"z ..... " . . . . . . .  = - / 3  E ~'u"~176 ( e  u ) _ P ( , ) )  + O,a~ J\/{a~r~ (44) 
(~FIL1, . - . ,  n a  -- 1 ,  � 9  ~v i = 1  j = l  ~Jc~o 

for  the large-a limit. Compar ing  (44) with (39) suggests an interpolation 
formula  for  ln(tY")/z,) in terms of  t~ (") and t~ ("- ~), which includes both the 
small- and large-a~ limits: 

~(n) r r (~1 
In t',~ .............. t ~ = 1 r R,~ ........ ~) 

Z ~ ( n -  1)  
a.torLl, ..., ~c( -- I , . . . , ~  v 

~v=~ P~(C~c~ , + C~ .) 1 ~v~ =~ ~v~=~ Pv~P~Cv~ C~,~o~ 
1 - ~ = ~  p~r ..... ~, 2 (1 - ~ = ~  p~b~ ..... *.)P" 

r n - 1  Hi ~ ( i ] )  

fi E ~'~-,o ..~o ( p u ) _  p(o) (45) 
- -  Vuo 

/ = 1  ] = 1  ~c~O 

Equivalently, in terms of  the functions y("), 

In y(")(r~=~ r #(~) y(n-z) 

~ n - 7 7 

r n -  1 k~ ~ ( i ] )  

+/3( .~  - / ~ o )  _ In p(~l)(X,~=~) - fi ~=~ ~ ~o"<~ ~oe(o (P(~) - P"') (46) 
y=l ~0 
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Here ~b~ and C6~ are defined as in (40a), (40b) but with y(.)o(l>/y(,~-1) replacing 
#(')/t~("-lk [Note that the ranges of validity (45), (46), and (22) overlap, so 
that we can check the approximate equations (45) and (46) with the help of 
the exact (22) for each given z~.] 

For n = 1 we have (y(1) = y(0~ = 1) 

( c ~  + c~) 

l X;V x;v C u ~6 m-1 k~ S(ij) 
~71=1 /'V2 = 1 71~26 gO + ~  ~ ' - '~%-~ - ~  + f l  E E v"> do ( p u ) _ p ( , ) )  

k -- /_~y=l "F~' ) ~=1 ]=1 60 

(47) 

The pressure can be eliminated from the right-hand side of (47) via the Gibbs- 
Duhem relation 

8P _ 1 ~=1 f dX~ p(~l>(X~) 3/~y (48) 
3p~>(X(~) V 8p(~1)(X6) 

Since neither the chemical potential nor the pressure depends on X, we obtain 

In p?'(x~) + E~:1 [C;~(x6) + C~(x~) ]  
1 - E~:~ ~ ( x ~ )  1 - E~=~ ~ 6 ( x ~ )  

~, --a X 2 
- -  ~ - -  ~ = In A (49)  

+ 2  1 - E ~ = 1 r  ~)l 

where ~, is a normalization constant assuring 

1 f (49a) dX p~>(x) = p~ 

The quantities ~y and C~y are defined by 

Cy~(X~) = - f  dXy vo~ f rx X~)p(~)(X~) (36a) 
v ~ ( ~ )  ~ 6~,--~, 

E C~;~  r ~-,r X ~(1vX C~%(X6) dX~ (36b) 

where vo~ and C2~ ~ can be calculated either at a~ ,  ar~ or d6~, d~. 
Note that instead of using (48) we could have chosen to eliminate the 

pressure from (47) via the virial relation, or the compressibility, or energy 
equations, (z~ etc. Each of these alternatives leads in general to different 
thermodynamic results, for example, to ones which violate the Gibbs-Duhem 
relation. We feel it is more important to satisfy this thermodynamic relation 
(otherwise the free energy as a function of state cannot be calculated) than to 
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require that addit ional  statistical mechanical  (e.g., virial, compressibility, or 
energy) relations be obeyed exactly. 

The closed set of  equations (47)-(49) comprises the SPT and can be 
solved to provide the pressure, chemical potential,  and the distribution p(~z~ as 
functions of  the temperature  T and densities p~. The higher distributions y<~ 
and p<"~, n > I, are given by (45), (46), (22), and (16). 

4.4. I l lustrat ions:  Successes and Failures 

4.4.1. Hard -Sphere ,  Isotropic Fluid. We consider first a single- 

and 

p(~(X) = p, ~,~ = pro, 

+ 6 Vo_______g__p 
/3/z =/3/z 0 + In 1 - Vop 1 - Vop 

m --cr 
CL = 3pv0 (50) 

9 [  Vop ~ 
+ -~ U_--=-~oO] + vo~e (51) 

In conjunct ion with (48) this yields the familiar equat ion of  state 

v~ + 3 + 3 (52) 
v o ~ P =  1 - v o p  

which has been obtained earlier by the scaled-particle, (~ Percus-Yevick,  (17~ 
and y-expansion (a) theories. 

Fo r  n = 2, Eqs. (23) and (40) give 

Cg~ = C~, ~ = 3~b(r12) (53) 

~b~ ~ = g dr3 H ( d -  rla)H(r2a - d)y(2~(r28) 

~ r12+~ 
- t dt (d  2 - r~2 + 2try2 - t2)y<2~(t) =- ~b(r12) (54) 

8r'~12 max(d,rl~-d) 
and hence 

In y<2~(r12 ) = In 1 - p~b(r~) + [ pVo p_}b(r12) ] 
1 - two 1 ---)Vo 1 - p~b(r12)] 

9 pro + 9 p~b(r12) .] (55) 
x 6 + 2 1 - pro 2 1 - p~b(r~2)] 

Since 

we have 
~b(r --> O) ... rzry(2)(d)d 2 --> 0 

y(2)(r --> O) = exp[fl(tz ex - voP)] 

but,  f rom the zero-separation theorem, 

y(2)(r = O) = exp[fi(t~ex)] 

(54a) 

(55a) 

(56) 

component  system of  hard spheres. I f  it is isotropic, then 
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This jump of  y(2) at r = 0 is a consequence of  the discontinuity of  the pair 
potential  at r = d. The fact that y(2)(r ~ O) < y(2)(r = 0) must be taken into 
account when using y(2)(r--> 0) f rom an approximate theory- - ins tead  of  
yC2)(r = 0)- - in  the zero-separation theorem. In the Percus-Yevick theory,  for  
example, y(2)(r ~ 0) is too low (~a) and leads via the zero-separation theorem 
to a poor  equat ion of  state for  the hard-sphere fluid. (~9) 

4.4.2. Hard-Sphere ,  Anisotropic  System (Solid). If  the hard 
sphere system of  interest is anisotropic, it follows from Eqs. (23) and (49) that  

G ~ = g dt o m ( t ) H ( d -  Ir - tl) ~ ~(r) (57a) 

- - C r  w 

C~y = C~ = 3~(r) (57b) 

and 

[ 9( 
p(l~(r) = t[1 - ~(r)] exp - 6  1 - ~(r) 2 1 - ~(r)!  J 

with 

{ f  [ ~(t) 9 ( ~ ( t ) _  ~ 2 ] ; - 1  (57d) ;~ = pV dt [1 - ~b(t)] exp - 6  1 - ~(t) 2 \1 - ~b(t)/ J j  

Fo r  

pa)(r) = ~ 8[r - l(vl, v2, v3)] (58) 
YZ,V2,V3 

with 3(r) the Dirac delta function and the l's running over a three-dimensional 
lattice, 

1 = f-L Ir - 11 < d (57a') 
~(r) = ~ ~ H [ d -  ]r - l(vl, v2, va)t] tO, otherwise 

Thus 

h = pl[1 + ~rrd3p(-}e -9s/98 - 1)] = p/(1 - 0.6613Vop) 

(Vo = {lrd 3) and 

f ~ he - 93/~ 
p(1)(r) = LA ' 

Ir - l ( v l ,  v2 ,  ~3)] < d 
(57c') 

otherwise 

in contradict ion to (58). Thus only a periodic function with broad enough 
peaks can be a solution to the integral equat ion (57c)--but  it is not  clear 
whether such a function can represent the singlet distribution of  hard spheres 
in the solid state. 
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4.4.3. A t t r a c t i n g  Hard Spheres:  g ~ l  and l+-~s Transit ions.  
Consider now a pair potential in the form of a square well (d, e, a). For  
isotropic states of  the system, we have (n = 1) 

=  op(1 - x )  =- # ,  = = 3 #  ( 5 9 )  

where 

X = (1 - da/aa)e ~,  Vo = ~Tra a (60) 

Then 

/3/~ =/3/x o + In 1 - ~b-----p ~ + voPP (61) 

and 

Vo[3 P =  (3-~2X) 2In(1 1 - x l  

3 3 - X  p~b 9 (1 p_@~p~)2 (62a) 
X 2 1 - p~b 2 X 

with 

~ P  _ (1 + 2~bp) 2 f~>0 0 < p < 1/Vo (62b) 
Op (1 - ~bp)3(1 - V o p ) ~ O  p > 1/Vo 

Define the temperature To by - ~ / k  ln(1 - da/aa), so that  0 < ~b < Vo when 
T > To and ~b < 0 when T < To. Then the pressure is seen to be a non- 
decreasing function of  the density when p < 1/Vo, and decreasing when 
1/vo < p (<  1/~b if T > To--/~ and P diverge at p = 1/~b). That  is, p = 1/Vo is 
the largest density for which the pressure behaves in a physically reasonable 
way [if vo on the right-hand side of  (61) is replaced by voda/a 3, Pm~x = aa/vod 3 
or 1/~b] and SPT fails to describe a gas-liquid phase transition. 

For  n = 2, Eqs. (23) and (40) lead again to Eq. (55) but with 

1 
f dra yr - rla)e Br + H(a - rla)(1 - eer ~(r12) = g 

x [H(r2a - d)e a~ + H(r2a - a)(1 - ebb)] (63a) 

and hence 

s176 ~b(r -+ 0) = -�89 ~ - 1) clt t2y(2)(t) (63b) 

Thus y(2~(r---> 0 ) >  exp[/3(/z ~  voP)] and y(m(r-+O) may be closer to 
y(m(r = 0) than in the case of  hard spheres without attraction: for inter- 
mediate temperatures the use of  y(2~(r-+ 0) in the zero-separation theorem 
should give reasonable results. This is consistent with the result of  Barboy and 
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Tenne, who have shown (2~ that  the Percus-Yevick theory and zero-separa- 
t ion theorem give a respectable equation of  state for  the "s t icky hard sphere"  
fluid (i.e., for  e -+ oo with x held fixed). 

For  an anisotropic phase of  the square-well fluid the singlet distribution 
p(~)(r) is again described by Eqs. (57c) and (57d), but  instead of  (57a),~(r) is 
now defined by 

if ~(r) = ~ dt p (1) ( t ) [H(d-  ]r - tl)e ' '  

For  a density of  the form (58), 

Thus 

and 

+ H ( a -  ] r - t l ) ( l - e ~ r  (64) 

1 
i f (r)  = ~ ,1 ,~  3 [ H ( d  - Ir - l l ) e  aE + H(a . -  lr - l l ) ( 1  - eBr 

F~, [r - ! I < d 

= i�89 - e~'), d < ]r - 11 < a 

k0, a < Ir - II 

(64') 

h=p 1 +Vop Xl l--a-5 + ~ - 5 X 2 -  1 

Xl = (1/8)(7 + e Be) exp[3(31 + eaE)(e B' - 1)/2(7 + ear 2] 

X~ = (7/8)e -98/98 

F X2A, 

p(1 ) (r )  = JXlh, 

1 r - 11 < a 

d <  [ r - I  I < a  

a < [r - 11 

in contradict ion to (58). Again, though,  a periodic function with broad peaks 
can be a solution to (57c) (see, however, Section 4.4.4b below). 

4.4.4. Mix tures  and Anisotropic  Systems: Thermodynamic  In- 
consistencies, 

(a) Isotropic Phases. We discuss first the case of  mul t icomponent  mix- 
tures of  hard spheres with nonaddit ive diameters. For  n = 1 we have 

Cg, = �89 + A~)ap~ (65) 
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flvo~P (2) = 

1 3 Vo, = ~d~, and 

and 

tip.= = /~/~,o + In 1 - {~" 2 ,  Pfla,( 1 + A~,) a '1 - ~-~-2, pvdya,( 1 + A~,)3 

#= ~ ~ (1 + a o , y - -  (1 + A ~ , , _ y  
+ -~- d~  ~2 ~ + A.,,)2 7 (1 + A.,,_~)2 
x [(1 + A~,)~(P (~+~) --P"))  - (1 + A ~ , _ 0 2 ( P " ) -  P"-~))] (66) 

where A ~  < A ~  < ... < A ~ .  
For simplicity consider a binary mixture (v = 2). In this case the last 

term on the right-hand side of (66) is 

~- ~ [ ( I + A ~ )  2 ] 
fl-6 d~r + 3A + A~) 1 + (1 + A)2P - p(2) (67) 

where dx = A~,  

1 --vo~p~ 2~ + 3 1 - vo~p~ m] + 3 1--vo~p~ ~] 

A, A > 0  
A 1 =  A H ( A ) =  0, A < 0  

p~2) is calculated from the equation 

PT' Vo~p~ ~' 9 ( Vo,p7 ) ~2 
In 1 - Vo,p~ 2, + 6 1 --  Vo,--p~ 2' + 2 . 1  - -  Vo,---p~ 2~] 

+ vo,fie (2) = fll~, - fll~, ~ (69) 

and . = a  if A > 0 and . # ~  if A < 0 ( r , c , =  1,2). To eliminate the 
pressure we use the Gibbs-Duhem relations 

W h e n / x  = 0 this procedure leads to the known generalization of (51) and 
(52) for mixtures of hard spheres with additive diameters (21~ 

3t ]" 6 #P = I - ~------~ + 3 ( i  - ~)~ + ~I - ~ d  

In P~ + 3  d~= # ~  = #t'~176 + 1 - #~ ~ ( ~  + d~,~)  

9 [ d ~ G  ]2 rr a (70) 
+ 2 \1 - ~o] + -6 d ~ f i e  
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where 
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~ = ~ prd2~ (70a) 
? = 1  

But if A~ v # 0, eliminating the pressure from the right-hand side of (66) 
yields a fundamental thermodynamic inconsistency: 

a~~ # a~/~po (71) 

More generally, for isotropic states of anisotropic hard particles, we find 
- ~'~" = S ~ p , )  ( ~ / =  Vo~pr and C." r = C~ p~ 

a~t,~ = 8~___~ + v~ + Y~ p~[Vo~(V~ - Vo~) + Vo~(V~ - Vo~) - yo,yos] 
Op, p~ 1 - ~v pvVov (1 - ZY pvVoT) 2 

pvp~p~oC~,o C~o + Vo~Vo~ ~r,6 PyPa(Cv~ o" + C~7 ~ Vo~Vo. ~,~,~ h.o. ~.o. 
(1 - E~ p~Vo~) ~ + (1 - E~ p~Vo# 

{ ~  ,.~ . . . .  h.o, ~v,op~pjvo~C~ C~ + vo~Clo C~ " L (72) ~' pyt .~cr  L,  yor h . . c  b .c .  h . c .  b . c .  

+ - ~, P,~o5 ~ + 0 - Z T,~o,~ j 

The term in curly brackets leads to the inequality (71), unless (22~ all the 
particles in the mixture have the same shape, differing only in size: 

(VoJVo#J ~ = ( s J s , ) ~  ~ = [ ~ / ~  

(b) Anisotropic Phases (Liquid Crystals and Solids). Differentiation 
of (47) and subsequent use of the Gibbs-Duhem relation (48) gives 

Vo, E, [C;~(x~) + Cg,(x~)] + c~ ~ E, C ; / x ~ )  + 
[1 - y ,  f f / ( x = ) ]  ~ 

Vo, E,,a C,~(X.)C~(X~)\ Vo. dX, p~(X,) ~fltzv (73) 
+ ~ - ~ ~  j + - - 7  ,~p~'(x,) 

where the symbolic 3=~(X~, X,) is defined as a linear functional 

V~__~ f dX~ 9~(X~) 3~(X~, X~) = ~ (X0  (74) 

on a set of ~ arbitrary functions {~o~(X.)}~=~ ..... ~. Therefore we see that 

~1~/8pr ~ # 8l~,/3p(~ ~ (75) 

or, for a pure system, 

8/~/3p<~)(Xz) # ~/z/3p(~)(X2) (75a) 
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that  is, the functional  derivative 3tz/3p (1~ varies f rom point  to point  (direction 
to direction), in violation o f  the thermodynamic  behavior. 

We note, in conclusion, that  in two-dimensional  systems the quadratic 
(third) term on the r ight-hand side o f  Eqs. (45)-(49) does not  appear, and as 
a consequence (71) becomes an equality for the case considered in Eq. (72). 

Lasher (6~ and Cotter  and Mart ire  (5~ have developed slightly different 
versions o f  the SPT; we recover their results upon  replacing ~ by Voypr in 
the denominators  o f  (47) and (49). But these minor  differences do not  change 
the fundamental  difficulties pointed out  above for the liquid crystal phase 
transitions. Hencefor th  we do not  consider the various versions o f  SPT which 
have been offered recently to deal with fluids o f  anisotropic particles. Instead, 
in the accompanying  paper, we treat further the y-expansion approach 
proposed  by us earlier. 
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